
Strategies for Enabling Software Reuse within the
Earth Science Community

Samadi, Shahin (Shahin.Samadi@gsfc.nasa.gov); Alameh, Nadine (nadine.alameh@gst.com); Wolfe, Robert
(robert.wolfe@gsfc.nasa.gov); Olding, Steve (solding@everware.com); Isaac, David (david.isaac@teambps.com)

NASA Goddard Space Flight Center
Greenbelt, MD

Abstract— The Earth Sciences software development community
is often challenged to provide cost effective, highly reliable and
easy-to-use software to achieve scientific missions. In the process,
the NASA Earth Science Enterprise (ESE) spends a significant
amount of resources developing software components and other
software development artifacts that may also be of value if reused
in other projects requiring similar functionality. A recent study
performed under the NASA’s Strategic Evolution of ESE Data
Systems (SEEDS) initiative suggests that reuse of ESE software
can drive down the cost and time of system development, increase
flexibility and responsiveness of these systems to new technologies
and requirements; and increase effective and accountable
community participation. In 2004, the Earth Science Software
Reuse Working Group was created to oversee the development of
a process that will maximize the reuse potential of existing
software components while recommending strategies for
maximizing the reusability potential of yet-to-be-designed
components.

Software reuse; reusability; classification; Earth Science;
SEEDS; NASA.

I. INTRODUCTION
The Earth Science community has invested heavily in

developing many software systems that range from simple
scientific algorithms to large and complex information systems
that store, process, analyze, and disseminate vast volumes of
remote sensing information. These systems represent a
tremendous potential source of software that could be reused to
create new systems and enhance current ones to meet future
mission needs within given budget constraints. Software reuse
has many obvious benefits such as increased productivity,
reduced time to market and improved quality. Yet, realizing
these benefits for Earth science data systems has been
challenging. Although new generations of the more complex
systems often exploit domain knowledge and expertise from
previous development activities, a more disciplined reuse
approach is still needed to further assist with cost reduction and
productivity improvement.

In this paper, we present some of the preliminary findings
and strategy recommendations of the NASA Earth Science
Software Reuse Working Group. First, we summarize the state
of software reuse in the literature followed by an examination
of current reuse practices in the earth science community. We
conclude with some potential strategies for improving reuse
adoption based on a discussion of issues that have to be
addressed in order for a reuse process to be successful.

II. SOFTWARE REUSE IN THE LITERATURE
Reuse is the reapplication of various kinds of knowledge

about one system to another system in order to reduce the
effort of developing and maintaining that system. The reused
knowledge includes such things as domain knowledge,
technology expertise and development experience. This
knowledge is embedded in the various development artifacts
produced during the software development process, such as
analysis models, design documentation and program source
code. The motivation for reuse is typically based on
productivity and quality improvements. Productivity is often
defined as a function of cost and labor. If reuse can save cost
and labor compared to developing software from scratch, then
it enhances productivity. Maintenance effort is, in part,
dependent on the system's defect rate. If, by reusing previously
tested and debugged software, the overall defect rate can be
reduced then maintenance effort can also be reduced.

Software reusability is the extent to which a software
component can be used in multiple problem solutions. The
reliability of reusable artifacts has a direct impact on the
quality of the system that is reusing them. In general, to be
reusable, artifacts must be designed and implemented
accordingly. Fig. 1 summarizes several recommended
properties for a reusable component [1]:

• Self-contained: embodies only a single idea or set of closely related ideas
• Additivity: able to combine components with minimal side effects
• Formal mathematical basis: allow correctness conditions to be stated and

component combination to preserve key properties of components
• Confidence: the (subjective) probability that a module, program or system

performs its defined purpose satisfactorily (without failure) over a specified
time in another environment than it was originally constructed and/or
certified for

• Understandability: its purpose is clear to the inspector
• Verifiable: easy to test
• Encapsulation: internal elements, in particular data structures, are hidden
• Simple interface: minimal number of parameters passed and parameters

passed explicitly
• Flexibility: the existence of a range of choices available to the implementer
• Easily changed: easy to modify with minimal and obvious side effects
• Generality: generic functionality within a particular domain
• Programming language-independent: not unnecessarily specific about

superficial language details
• Portability: can be transferred from one computer system or environment to

another

Figure 1. Recommended properties of a reusable component.

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2196

I. Reusability Methods
Fig. 2 summarizes the two common types of code reuse:

• Black-box reuse is reuse without modification. It can assist consistency
across products and reduce redundant development and maintenance efforts.
The problem with this method is that many reusable components are ignored
because they do not meet the exact needs of the target system.

• White-box reuse is reuse with modification. It is more popular with many
implementers because the component can be tailored to fit the exact needs of
the target system. However, the productivity benefits of reuse can rapidly
diminish as more modifications are introduced. In addition, changes to the
code can introduce errors and other unexpected side effects.

Figure 2. Common types of code reuse.

Other terms have been coined to describe variants of these
two approaches: for example gray box reuse, where the
implementer has the ability to customize only selected parts of
the component, and glass box reuse, where the implementer
can examine the contents of the component to get a better
understanding of how it works but cannot make changes.

II. Software Reuse Process
There are generally two major aspects of software reuse to

consider: building and using reusable components. The steps
to take for software reuse and the issues to consider for each
aspect are summarized in the following table [2]:

TABLE I. SOFTWARE REUSE ASPECTS

Building Reusable Components

Using Reusable Components

Identify components that can be
widely reused

Define components and adapting
them for reuse
• Domain analysis
Classifying and storing the reusable
components in a library
• Hierarchical organization

scheme by application type and
by function within the
application

• Object-oriented techniques
such as inheritance and classes

Represent reusable components in a
standard form
• Graphical format
• Hypertext system
• Object-oriented programming

languages (encapsulation,
inheritance, abstract data
types, object classes)

• Testing tools
• Metrics tools
• Standard checkers

Find the reusable components
• Components need to be easy to

find
• Search methods such as keyword

in context (KWIC), function
index , hierarchy of function
categories , keyword index,
structured queries, pattern
matching

Understand the reusable components
• Re-Engineering tools such as

program analyzer, logic and data
tracer, logic and data
restructures, logic and data
reverse engineering

• Hypertext system that links
reusable components to
documentation

Modify the reusable components
• “When” and “how” used

information
• Program code analyzer
• Metrics tools
• Other tools to validate

completeness, consistency,
compliance to standards and the
quality of the modified
components

Combine and incorporate the reusable
components
• CASE tools

To facilitate the software reuse process, developers need to
be able to easily locate and evaluate the available reusable
artifacts. For this reason, most studies suggest that the reusable
artifacts should be classified and made available through an

appropriate clearinghouse (i.e., libraries, repositories) that can
facilitate searching and indexing. These catalogs and
repositories are an essential ingredient in transforming ad-hoc
reuse, which is largely dependent on personal knowledge and
word of mouth dissemination of information about the
availability of reusable artifacts, to reuse as a systematic part
of the software development process. Component-based
architectures [6, 7] as well as technologies such as web
services, semantic web, conceptual graphs and domain
ontologies [8, 9, 10] can also be used to support this process
and improve the classification and retrieval of reusable
components.

Another key ingredient in systematizing software reuse is
the adaptation of the software development process. By
incorporating reuse and reusability assessments at appropriate
stages in a project's software development life cycle, the
project establishes formal decision making points for
evaluating and validating reuse and building for reuse
decisions. The reuse of a particular software component can
have a significant impact on the design and implantation of the
other parts of the system that need to interact with it, so it is
important to identify any reuable components as early as
possible in the development process.

III. THE EARTH SCIENCE DATA SYSTEMS SOFTWARE
REUSE WORKING GROUP

To address the technical issues required to enable and
facilitate reuse of those software assets within NASA’s Earth
Science Enterprise (ESE), the NASA Earth Science Software
Reuse Working Group was created. The Working Group was
chartered to oversee the process that will maximize the reuse
potential of such components in order to (1) drive down the
cost and time of system development, and reduce/eliminate
unnecessary duplication of effort; (2) increase flexibility and
responsiveness relative to Earth Science community needs and
technological opportunities; and (3) increase effective and
accountable community participation.

A. Software Reuse Working Group Goals
The Working Group is currently recommending and

supporting activities that help increase awareness of available
components, increase awareness of the value of reuse, provide
needed processes and mechanisms, disseminate successful
reuse strategies, and address related intellectual property and
policy issues. In the process, the Working Group is considering
a variety of approaches to enabling reuse to help meet differing
needs and priorities across various Earth science systems.

B. Approach
To achieve the above goals, the Working Group is engaging

in the following activities:

• Providing technical consultation, as needed, in reuse
implementation projects and other efforts that directly
result in the publication or use of reusable components
including the registration and categorization of
reusable components

• Leading outreach and education activities and
sponsoring efforts that increase community awareness
and understanding of reuse benefits, pro-actively foster

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2197

cooperation within the community, as well as facilitate
the exchange of best practices, lessons learned, tools,
available components, etc.

• Providing technical consultation, as required, in
support and enablement activities which include
supporting infrastructure building efforts and other
mechanisms needed to enable reuse (tools, metadata
mining, etc)

• Contributing to policy change activities, especially
those related to reducing policy barriers to reuse.

More information about the Working Group and its
progress to-date can be found in [3].

IV. SOFTWARE REUSE SURVEY AND PRELIMINARY
RESULTS

To learn about the software reuse trends and needs in the
Earth Science community, the Working Group designed a
survey to capture the components reused by the community in
the recent past (success stories) and the components that they
would like to reuse in the near future (near-term needs). Below
is an overview of the elements of the survey as well as some
preliminary results that will help in setting the direction of the
group and identifying the strategies for enabling reuse within
the community.

A. Survey
A software reuse survey was distributed to members of the

Earth Science community, and consisted of the following parts

• Information about respondent (role in software
development, type of organization, operating systems
and programming languages)

• Recent reuse experiences (experiences using software
development artifacts developed outside of
project/group, types of artifacts reused, reuse
percentage, barriers to reuse, reasons for considering
reuse, factors influencing decisions for reusing existing
assets, and types of licensing exercised)

• Recent reusability experiences (experiences developing
software for reuse, types of artifacts provided for reuse
and barriers for developing for reuse)

• Community needs (factors that can increase the level of
reuse within the community and new approaches
considered by the community)

B. Preliminary Results
Since the survey is still open, we only present here some

preliminary results. Further analysis of the responses will be
presented in a future paper.

1) Reuse Experiences

To-date, the survey revealed that source code and scripts as
well as algorithms and techniques have been the most
commonly reused types of artifacts within the last five years.
When asked about the factors influencing their decision to
consider reuse, most respondents chose saving time/money
and ensuring reliability as their primary drivers for reuse. Most

respondents also indicated that ease of adaptation/integration,
availability of source code and cost of creating/acquiring
alternative were the key factors for evaluating any given
artifact for reuse. Perhaps surprisingly, the availability of
support/maintenance, standards compliance and
testing/certification were not ranked as particularly important
by the respondents, whereas a recommendation from a
colleague was.

Furthermore, the ranking of sources used to locate reusable
artifacts confirmed some of our earlier interviews: most reuse
has been reliant on identifying artifacts found through word of
mouth or personal knowledge from past projects. Generic
search tools (such as Google) were rated as somewhat
important, whereas specialist reuse catalogs or repositories
were not cited as being particularly important. The latter
probably reflects a large number of disparate catalogs and
repositories and the absence of a catalog specifically targeted at
the Earth Science community.

Finally, in response to the question about why respondents
chose not to reuse an existing artifact, a variety of barriers to
reuse were identified. The wide variety of responses would
seem to reflect the range of individual experiences pertaining to
each individual reuse instance. However two common themes
emerged: (1) available software did not exactly meet the
reuser’s requirements, (2) the software was difficult to
understand or poorly documented.

2) Reusability Experiences

Most of the respondents (80%) claim to have made some of
their software development artifacts available for reuse outside
of their immediate project. However, the additional cost of
developing for reuse and concerns over support and
maintenance were identified as factors that may prevent more
artifacts from being made available. Amongst those
respondents that had not made artifacts available for reuse,
their organizations’ software release policies, concerns over
intellectual property rights and, in particular, the absence of a
common distribution mechanism were regarded as additional
barriers to making artifacts available to others.

3) Community Needs

When asked about the factors that can help remove some
of the above barriers and increase reuse within the Earth
Science community, there was significant support for an
increased use of open source licensing, establishing an Earth
Science-focused catalog or repository for reusable artifacts
and for providing education/guidance on reuse.

V. ESE ASSETS CLASSIFICATION MODEL
In preparation for investigating alternatives for an ESE-

focused repository or catalog, it was necessary for the Working
Group to develop an ESE-specific assets classification model to
be used as a basis for a future reuse enablement system for the
community.

A. Assets Classification Model: Domain Analysis Approach
The literature indicates that reusable software components

can be classified into two categories: horizontal and vertical.
Horizontal reuse refers to reuse across a broad range of

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2198

application areas such as user-interface, data structure and
sorting algorithms. Vertical components, on the other hand, can
be reused in a similar application within the same problem
domain. Since vertical reuse is desired in the case of the Earth
Science community, the Working Group determined that a
domain analysis study is required. Domain analysis is defined
as a process by which information used in developing software
systems is identified, captured and organized with the purpose
of making it reusable when creating new systems. Domain
analysis deals with the development and evolution of an
information infrastructure in support of reuse. Fig. 3
summarizes the generic activities in domain analysis methods
[4]:

• Domain characterization and project planning (includes selection and
description of domain, identification of relevant data, creation of data
inventory and project planning)

• Data collection (includes recovering abstraction, reviewing the literature,
eliciting knowledge from experts and developing scenarios)

• Data analysis (includes identification of entities, events, operations and
relationships, modularization of the information, analysis of similarities,
variations, trade-offs and combinations

• Classification (includes cluster, abstract, classification, generalization
descriptions and construction of vocabulary)

• Evaluation of domain model

Figure 3. Typical domain analysis activities.

Table II captures the high level classification themes as
drafted by the Working Group in preparation for the
development of a formal classification model.

TABLE II. HIGH LEVEL EARTH SCIENCE CLASSIFICATION THEMES

Application
Layer Function Examples

Visualization GUI, Output format (GIF, HDF-
EOS, Polygon, TIFF etc.) User

Application
Layer

Analysis
Image Analysis, Clustering,
Pattern Recognition, Spatial
Filtering, Texture Operations

Discovery and
Analysis

Data Product identification,
Sampling, Access Control,
Metadata Search Capabilities,
Metadata Transport, Data Product
Transports Science Data

Processing
Layer

Processing

Data Selection, Validation,
Dependencies, Ingest, Archive,
dissemination, Process Execution
Planning and Scheduling Activity
Monitoring, Resource Scheduling
and Optimization

Management Data Transport, Metadata
Definition, Data Format Data Archive

Layer
Storage Storage Abstraction: File Systems,

Databases, HSM

Such a classification model can be the basis for a reference
architecture, which has also been shown to help in enabling
software reuse within a community [5]. Such a reference
architecture captures the fundamental components of the

domain and the relations between them. Many mature domains,
such as compilers and operating systems, have well-known
reference architectures that have facilitated the software reuse.

VI. STRATEGIES AND NEXT STEPS
Based on the literature research and Earth Science

community-specific results presented in this paper, the
Working Group will continue to find ways to support software
reuse in the form of

• Building a support structure that would enable and
facilitate software reuse within the Earth Science
community.

• Studying domain-specific classification schemes that
can assist with indexing, searching and retrieving
individual ESE software artifacts efficiently.

• Investigating requirements for a reuse enablement
system that goes beyond Earth Science-specific
repositories or catalogs.

• Identifying high-quality reusable components and
making them available for others to reuse.

• Working on a commitment from the project sponsors
(in the form of funding, incentives and policy changes)
and from the community (in the form of participation
in the working group and the contribution/use of
reusable assets).

The reader is referred to the Working Group web page [3]
for updates on the activities of the Working Group and its
progress in defining reuse enablement strategies and in
achieving the above objectives.

REFERENCES
[1] R. Martin, G. Jackoway, and C. Ranganathan,, “Software Reuse Across

Continents”, Hewlett-Packard, Position Paper, 1994.
[2] C. McClure, The Three Rs of Software Engineering: Re-Engineering,

Repository, Reusability. Prentice-Hall Inc. 1992.
[3] NASA Data Systems Reuse Working Group Web Page

http://softwarereuse.gsfc.nasa.gov.
[4] J.M. Armstrong, and R. J. Mitchell, “Uses and Abuses of Inheritance”,

Software Engineering Journal, Vol.: 9 Iss: 1, pp. 19-26, Jan. 1994.
[5] A.E. Hassan and R.C. Holt, “A reference architecture for Web

servers”, Reverse Engineering, 2000”. Proceedings. Seventh Working
Conference, pp. 150--159, Nov. 2000.

[6] H. Yao and L. Etzkorn, “Towards a semantic-based approach for
software reusable component classification and retrieval”, Proceedings
of the 42nd annual Southeast regional conference SESSION: Software
engineering #1, pp. 110 – 115, 2004

[7] Y. Kim, E. A. Stohr, "Software Reuse: Survey and Research Directions,"
Journal of Management Information Systems, Spring 1998, Vol. 14, No.
4, pp. 113--147.. 1998.

[8] Semantic Web (SW) http://www.w3.org/2001/sw/, accessed Oct. 13,
2003

[9] Web Service Description Language (WSDL)
http://www.w3.org/TR/wsdl, accessed Oct. 12, 2003.

[10] eXtensible Markup Language (XML) http://www.w3.org/XML,
accessed Oct. 12, 2003.

[11] NASA JPL SWEET Project http://sweet.jpl.nasa.gov/index.htm

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2199

	footer1:

